您当前的位置: 首页 >  博客资讯

你真的会解方程吗?一文读懂方程和对称性

你真的会解方程吗?今天我们从简单的解方程开始,为大家介绍一位英年早逝的数学家的工作,从这些工作中我们将看到优美的对称性,以及蕴含在其中的和谐奥妙。

撰文 | Marianne Freiberger

翻译 | Nothing

审校 | C&C

尼尔斯・亨里克・阿贝尔

1824年,一位年轻的挪威数学家尼尔斯・亨里克・阿贝尔取得了一个与某类方程相关的令人震惊的结果。不久之后,法国天才数学家埃瓦里斯特・伽罗瓦以深入的眼光证明了这一结果为什么是正确的――并在这个过程中开创了用数学研究对称性的先河。可惜两人都英年早逝,没有来得及享受他们的工作带来的好处。阿贝尔于1829年死于肺结核和贫困,时年26岁。伽罗瓦死于1832年,他在一场据称是为了争夺一个女人而进行的决斗中被杀死。当时他只有二十岁。

那么他们做出了什么样的工作?方程和对称性又有什么关系?

解方程

Solving Equations

最著名的公式之一是二次方程的通解公式,如果方程写为:

虽然关于二次,三次,四次方程的通解公式看起来有些复杂,但是它们只包含了有限个运算操作:加、减、乘、除、开平方、开三次方、开四次方。

很显然,你接下来会问,我们可以为五次方程找到一个类似的通解公式吗?

更一般的,包含x高阶项的多项式方程的通解公式长什么样子?

伽罗瓦画像 在他死后16年的1848年,由他的兄弟根据记忆所作

我们想要的是一个公式,这个公式只包含加减乘除和求根操作。如果一个方程具有这样一个通解公式,那么我们说这个方程是有根式解的。

1824年阿贝尔证明的结论是:对于一般的五次方程,不存在根式解。当然,这并不意味所有的五次方程都是没有根式解的。例如,多项式方程:

拥有一个解:

但是对于一般的五次方程,确实不存在一个普适的根式解公式。

阿贝尔证明了这一结果,但几年后,伽罗瓦才真正意识到为什么五次方程不存在根式解。伽罗瓦常被认为群论的奠基人,群论是一门研究对称性的数学。 我们通常认为对称性是一种视觉现象:一幅画或图案可能是对称的。但是对称性和方程有什么关系呢?答案有些微妙,但非常美丽。

不变的对称性

Unchanging Symmetry

首先,让我们思考对称性真正的含义。我们说一个正方形是对称的是因为我们将它绕着中心轴旋转90度,或者将它对于各种轴做反射操作并不会改变它的外观。所以对称性意味着没有变化:如果我们对某个物体进行某种操作之后并没有改变它,那么它就具有对称性。

当我们思考二次方程式,我们可以发现少许对称性。例如,二次方程

拥有两个解

方程具有两个离散的解,但是某种意义上,它们非常相似:只需在一个解上加上一个负号就可以得到另一个解。也许交换两个解并不会带来什么不同,就像对正方形做镜像操作一样意味着一种对称性一样,交换方程的两个解也许也意味着某种对称性。但究竟是哪种对称性呢?

加入无理数

Including Irrationals

蝴蝶有对称性,方程也有对称性!

为了理解这些结果,让我们考察一下方程所包含的数字:

交换两个解

Switching Solutions

伽罗瓦群

Galois's Group

为什么你解不出一般的五次方程?

Why you can't solve the general quintic?

我们可以对其他任意多项式做类似的事情,例如对一个五次方程:

纪念伽罗瓦的法国邮票

伽罗瓦所能证明的是,一个方程是否有根式解,取决于它的伽罗瓦群的结构。有时候伽罗瓦群可以被分成更小的分量,它们和取n次方根有关。如果是这种情况,那么方程拥有根式解。

然而,如果它无法以恰当的方式分被解成更小的分量,如果你不能把对称性分离出来,那么你就找不到一个只涉及加、减、乘、除和求根的通解,在这种情况下,方程不存在根式解。

我们可以证明,五次方程并不能以恰当的方式分解。因此,五次方程不存在根式通解。对于包含x的更高次幂的多项式方程也是一样的:它们没有根式通解。用群论研究方程的解被称为伽罗瓦理论,这一理论以其发明者的名字命名。

本文经授权转载自微信公众号“中科院物理所”。

原文链接:https://plus.maths.org/content/stubborn-equations