python中 OpenCV和Pillow处理图像操作及时间对比

目录

引言 最近再做图像处理相关的操作时间优化,用到了OpenCV和Pillow两个库,两个库各有优缺点。各位小伙伴需要按照自己需求选用。 本篇博客做了简单整理,对常用操作做了对比整理,以及给出具体运行时间说明。

OpenCV和Pillow的优缺点对比 库 优点 缺点 OpenCV 由C和C++编写,跨平台,有着多个语言的实现,部署比较方便 对显示中文支持较差、Python下常用函数不是太好看-_-! Pillow 常用函数操作封装较好,对显示中文字体有着很好的支持 处理时间较慢

测试环境:

OS: Windows10 Python: 3.7.13 OpenCV: 4.6.0.66 numpy: 1.21.6 Pillow: 9.2.0

测试图像 :

PNG图像: JPG图像:

读取图像的通道顺序区别:

OpenCV读取图像,通道顺序是:BGR Pillow读取图像,通道顺序是:RGB

获得图像shape区别:

OpenCV.shape是(height, width, channel Pillow.size是(width, height)

示例代码:

import cv2
from PIL import Image

img_path = 'images/test_demo.png'

cv_img = cv2.imread(img_path)
height, width, channel = cv_img.shape

pillow_img = Image.open(img_path)
width, height = pillow_img.size

读写图像

读图像

示例代码:

import cv2
from PIL import Image
import numpy as np

png_img_path = 'images/test_demo.png'
jpg_img_path = 'images/test_demo.jpg'

# 由jupyter notebook中魔法命令:%%timeit测得
# 169 ms ± 1.68 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)
cv_img = cv2.imread(png_img_path)    

# 52.9 ms ± 541 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)
cv_img = cv2.imread(jpg_img_path)

# 300 ms ± 8.45 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
pillow_img = Image.open(png_img_path)
pillow_img = np.array(pillow_img)

# 47.4 ms ± 1.87 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)
pillow_img = Image.open(jpg_img_path)
pillow_img = np.array(pillow_img)

小结:

读取图像格式为PNG,且都转为np.array格式,优先选择OpenCV。 读取图像格式为JPG,且都转为np.array格式,速度相差不大,按需选取即可。

写图像

示例代码:

save_png_path = 'output/result.png'
save_jpg_path = 'output/result.jpg'

cv_img = cv2.imread(png_img_path)
pillow_img = Image.open(png_img_path)

# 346 ms ± 11.5 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
cv2.imwrite(save_png_path, cv_img)

# 158 ms ± 4.03 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)
cv2.imwrite(save_jpg_path, cv_img)

# 2.81 s ± 38.2 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
pillow_img.save(save_png_path)

# 51.3 ms ± 1.72 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)
t = pillow_img.convert('RGB') 
t.save(save_jpg_path)

小结:

写图像格式为PNG,优先选择OpenCV。 写图像格式为JPG,选择Pillow。

缩放图像

示例代码:

png_img_path = 'images/test_demo.png'

resize_shape = (2048, 2048)
cv_img = cv2.imread(png_img_path)
pillow_img = Image.open(png_img_path)

# 6.93 ms ± 173 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
cv2.resize(cv_img, resize_shape, interpolation=cv2.INTER_CUBIC)

# 151 ms ± 2.21 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)
pillow_img.resize(resize_shape, resample=Image.Resampling.BICUBIC)

小结: OpenCV速度完胜Pillow

旋转图像

示例代码:

angle = 38

# 23.6 ms ± 732 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)
h, w = cv_img.shape[:2]
M = cv2.getRotationMatrix2D((w / 2, h / 2), angle, 1)
rot_img = cv2.warpAffine(cv_img, M, (w, h))

# 82.1 ms ± 2.37 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)
rot_img_pillow = np.array(pillow_img.rotate(angle))

小结:OpenCV速度完胜Pillow 

总结:

如果可以选择,优先选择OpenCV处理图像 Pillow可以用来处理显示中文相关问题 原文地址:https://blog.csdn.net/shiwanghualuo/article/details/127029583
61人参与, 0条评论 登录后显示评论回复

你需要登录后才能评论 登录/ 注册