您当前的位置: 首页 >  编程语言

跟我学Python图像处理丨何为图像的灰度非线性变换

摘要:本文主要讲解灰度线性变换,基础性知识希望对您有所帮助。

本文分享自华为云社区《》,作者:eastmount 。

本篇文章主要讲解非线性变换,使用自定义方法对图像进行灰度化处理,包括对数变换和伽马变换。

一.图像灰度非线性变换

图像的灰度非线性变换主要包括对数变换、幂次变换、指数变换、分段函数变换,通过非线性关系对图像进行灰度处理,下面主要讲解三种常见类型的灰度非线性变换。

原始图像的灰度值按照DB=DA×DA/255的公式进行非线性变换,其代码如下:

# -*- coding: utf-8 -*-
import cv2  
import numpy as np  
import matplotlib.pyplot as plt
#读取原始图像
img = cv2.imread('miao.png')
#图像灰度转换
grayImage = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
#获取图像高度和宽度
height = grayImage.shape[0]
width = grayImage.shape[1]
#创建一幅图像
result = np.zeros((height, width), np.uint8)
#图像灰度非线性变换:DB=DA×DA/255
for i in range(height):
 for j in range(width):
 gray = int(grayImage[i,j])*int(grayImage[i,j]) / 255
 result[i,j] = np.uint8(gray)
#显示图像
cv2.imshow("Gray Image", grayImage)
cv2.imshow("Result", result)
#等待显示
cv2.waitKey(0)
cv2.destroyAllWindows()

图像灰度非线性变换的输出结果下图所示:

二.图像灰度对数变换

图像灰度的对数变换一般表示如公式所示:

其中c为尺度比较常数,DA为原始图像灰度值,DB为变换后的目标灰度值。如下图所示,它表示对数曲线下的灰度值变化情况。

由于对数曲线在像素值较低的区域斜率大,在像素值较高的区域斜率较小,所以图像经过对数变换后,较暗区域的对比度将有所提升。这种变换可用于增强图像的暗部细节,从而用来扩展被压缩的高值图像中的较暗像素。

对数变换实现了扩展低灰度值而压缩高灰度值的效果,被广泛地应用于频谱图像的显示中。一个典型的应用是傅立叶频谱,其动态范围可能宽达0~106直接显示频谱时,图像显示设备的动态范围往往不能满足要求,从而丢失大量的暗部细节;而在使用对数变换之后,图像的动态范围被合理地非线性压缩,从而可以清晰地显示。在下图中,未经变换的频谱经过对数变换后,增加了低灰度区域的对比度,从而增强暗部的细节。

下面的代码实现了图像灰度的对数变换。

# -*- coding: utf-8 -*-
import numpy as np
import matplotlib.pyplot as plt
import cv2
#绘制曲线
def log_plot(c):
    x = np.arange(0, 256, 0.01)
    y = c * np.log(1 + x)
 plt.plot(x, y, 'r', linewidth=1)
 plt.rcParams['font.sans-serif']=['SimHei'] #正常显示中文标签
 plt.title(u'对数变换函数')
 plt.xlim(0, 255), plt.ylim(0, 255)
 plt.show()
#对数变换
def log(c, img):
 output = c * np.log(1.0 + img)
 output = np.uint8(output + 0.5)
 return output
#读取原始图像
img = cv2.imread('test.png')
#绘制对数变换曲线
log_plot(42)
#图像灰度对数变换
output = log(42, img)
#显示图像
cv2.imshow('Input', img)
cv2.imshow('Output', output)
cv2.waitKey(0)
cv2.destroyAllWindows()

下图表示经过对数函数处理后的效果图,对数变换对于整体对比度偏低并且灰度值偏低的图像增强效果较好。

对应的对数函数曲线如图

三.图像灰度伽玛变换

伽玛变换又称为指数变换或幂次变换,是另一种常用的灰度非线性变换。图像灰度的伽玛变换一般表示如公式所示:

当γ>1时,会拉伸图像中灰度级较高的区域,压缩灰度级较低的部分。 当γ<1时,会拉伸图像中灰度级较低的区域,压缩灰度级较高的部分。 当γ=1时,该灰度变换是线性的,此时通过线性方式改变原图像。

Python实现图像灰度的伽玛变换代码如下,主要调用幂函数实现。

# -*- coding: utf-8 -*-
import numpy as np
import matplotlib.pyplot as plt
import cv2
#绘制曲线
def gamma_plot(c, v):
    x = np.arange(0, 256, 0.01)
    y = c*x**v
 plt.plot(x, y, 'r', linewidth=1)
 plt.rcParams['font.sans-serif']=['SimHei'] #正常显示中文标签
 plt.title(u'伽马变换函数')
 plt.xlim([0, 255]), plt.ylim([0, 255])
 plt.show()
#伽玛变换
def gamma(img, c, v):
 lut = np.zeros(256, dtype=np.float32)
 for i in range(256):
 lut[i] = c * i ** v
 output_img = cv2.LUT(img, lut) #像素灰度值的映射
 output_img = np.uint8(output_img+0.5) 
 return output_img
#读取原始图像
img = cv2.imread('test.png')
#绘制伽玛变换曲线
gamma_plot(0.00000005, 4.0)
#图像灰度伽玛变换
output = gamma(img, 0.00000005, 4.0)
#显示图像
cv2.imshow('Imput', img)
cv2.imshow('Output', output)
cv2.waitKey(0)
cv2.destroyAllWindows()

下图表示经过伽玛变换处理后的效果图,伽马变换对于图像对比度偏低,并且整体亮度值偏高(或由于相机过曝)情况下的图像增强效果明显。

对应的幂律函数曲线如图所示。